skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dale, Daniel A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stellar bow shock nebulae are arcuate shock fronts formed by the interaction of radiation-driven stellar winds and the relative motion of the ambient interstellar material. Stellar bow shock nebulae provide a promising means to measure wind-driven mass loss, independent of other established methods. In this work, we characterize the stellar sources at the center of bow shock nebulae drawn from all-sky catalogs of 24μm–selected nebulae. We obtain new, low-resolution blue optical spectra for 104 stars and measure stellar parameters temperatureTeff, surface gravity log g , and projected rotational broadening v sin i . We perform additional photometric analysis to measure stellar radiusR*, luminosityL*, and visual-band extinctionAV. All but one of our targets are O and early B stars, with temperatures ranging fromT= 16.5 to 46.8 kK, gravities from log g = 2.57 to 4.60, and v sin i from <100 to 400 km s−1. With the exception of rapid rotatorζOph, bow shock stars do not rotate at or near critical velocities. At least 60 of 103 (60%) OB bow shock stars are binaries, consistent with the multiplicity fraction of other OB samples. The sample shows a runaway fraction of 23%, with 19 stars havingv2D≥ 25 km s−1. Of the 19 runaways, at least 15 (≥79%) are binaries, favoring dynamical ejection over the binary supernova channel for producing runaways. We provide a comprehensive census of stellar parameters for bow shock stars, useful as a foundation for determining the mass-loss rates for OB-type stars—one of the single most critical factors in stellar evolution governing the production of neutron stars and black holes. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  2. Abstract We present 0.6–3.2 pc resolution mid-infrared (MIR) JWST images at 7.7μm (F770W) and 21μm (F2100W) covering the main star-forming regions of two of the closest star-forming low-metallicity dwarf galaxies, NGC 6822 and Wolf–Lundmark–Melotte (WLM). The images of NGC 6822 reveal filaments, edge-brightened bubbles, diffuse emission, and a plethora of point sources. By contrast, most of the MIR emission in WLM is pointlike, with a small amount of extended emission. Compared to solar-metallicity galaxies, the ratio of 7.7μm intensity ( I ν F770W ), tracing polycyclic aromatic hydrocarbons (PAHs), to 21μm intensity ( I ν F2100W ), tracing small, warm dust grain emission, is suppressed in these low-metallicity dwarfs. Using Atacama Large Millimeter/submillimeter Array CO(2–1) observations, we find that detected CO intensity versus I ν F770W at ≈2 pc resolution in dwarfs follows a similar relationship to that at solar metallicity and lower resolution, while the CO versus I ν F2100W relationship in dwarfs lies significantly below that derived from solar-metallicity galaxies at lower resolution, suggesting more pronounced destruction of CO molecules at low metallicity. Finally, adding in Local Group L-Band Survey 21 cm Hiobservations from the Very Large Array, we find that I ν F2100W and I ν F770W versus total gas ratios are suppressed in NGC 6822 and WLM compared to solar-metallicity galaxies. In agreement with dust models, the level of suppression appears to be at least partly accounted for by the reduced galaxy-averaged dust-to-gas and PAH-to-dust mass ratios in the dwarfs. Remaining differences are likely due to spatial variations in dust model parameters, which should be an exciting direction for future work in local dwarf galaxies. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. The property of star formation rate (SFR) is tightly connected to the amount of dense gas in molecular clouds. However, it is not fully understood how the relationship between dense molecular gas and star formation varies within galaxies and in different morphological environments. Most previous studies have typically been limited to kiloparsec-scale resolution such that different environments could not be resolved. In this work, we present new ALMA observations of HCN(1−0) at 260 pc scale to test how the amount of dense gas and its ability to form stars varies with environmental properties. Combined with existing CO(2−1) observations from ALMA and Hαfrom MUSE, we measured the HCN/CO line ratio, a proxy for the dense gas fraction, and SFR/HCN, a proxy for the star formation efficiency of the dense gas. We find a systematic > 1 dex increase (decreases) of HCN/CO (SFR/HCN) towards the centre of the galaxy, and roughly flat trends of these ratios (average variations < 0.3 dex) throughout the disc. While spiral arms, interarm regions, and bar ends show similar HCN/CO and SFR/HCN, on the bar, there is a significantly lower SFR/HCN at a similar HCN/CO. The strong environmental influence on dense gas and star formation in the centre of NGC 4321, suggests either that clouds couple strongly to the surrounding pressure or that HCN emission traces more of the bulk molecular gas that is less efficiently converted into stars. Across the disc, where the ISM pressure is typically low, SFR/HCN is more constant, indicating a decoupling of the clouds from their surrounding environment. The low SFR/HCN on the bar suggests that gas dynamics (e.g. shear and streaming motions) can have a large effect on the efficiency with which dense gas is converted into stars. In addition, we show that HCN/CO is a good predictor of the mean molecular gas surface density at 260 pc scales across environments and physical conditions. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Abstract We present the largest catalog to date of star clusters and compact associations in nearby galaxies. We have performed aV-band-selected census of clusters across the 38 spiral galaxies of the PHANGS–Hubble Space Telescope (HST) Treasury Survey, and measured integrated, aperture-corrected near-ultraviolet-U-B-V-Iphotometry. This work has resulted in uniform catalogs that contain ∼20,000 clusters and compact associations, which have passed human inspection and morphological classification, and a larger sample of ∼100,000 classified by neural network models. Here, we report on the observed properties of these samples, and demonstrate that tremendous insight can be gained from just the observed properties of clusters, even in the absence of their transformation into physical quantities. In particular, we show the utility of the UBVI color–color diagram, and the three principal features revealed by the PHANGS-HST cluster sample: the young cluster locus, the middle-age plume, and the old globular cluster clump. We present an atlas of maps of the 2D spatial distribution of clusters and compact associations in the context of the molecular clouds from PHANGS–Atacama Large Millimeter/submillimeter Array. We explore new ways of understanding this large data set in a multiscale context by bringing together once-separate techniques for the characterization of clusters (color–color diagrams and spatial distributions) and their parent galaxies (galaxy morphology and location relative to the galaxy main sequence). A companion paper presents the physical properties: ages, masses, and dust reddenings derived using improved spectral energy distribution fitting techniques. 
    more » « less
  5. We present the first results from “Surveying the Whirlpool at Arcseconds with NOEMA” (SWAN), an IRAM Northern Extended Millimetre Array (NOEMA)+30 m large program that maps emission from several molecular lines at 90 and 110 GHz in the iconic nearby grand-design spiral galaxy M 51 at a cloud-scale resolution (∼3″ = 125 pc). As part of this work, we have obtained the first sensitive cloud-scale map of N2H+(1–0) of the inner ∼5  × 7 kpc of a normal star-forming galaxy, which we compared to HCN(1–0) and12CO(1–0) emission to test their ability in tracing dense, star-forming gas. The average N2H+-to-HCN line ratio of our total FoV is 0.20 ± 0.09, with strong regional variations of a factor of ≳2 throughout the disk, including the south-western spiral arm and the center. The central ∼1 kpc exhibits elevated HCN emission compared to N2H+, probably caused by AGN-driven excitation effects. We find that HCN and N2H+are strongly super-linearily correlated in intensity (ρSp ∼ 0.8), with an average scatter of ∼0.14 dex over a span of ≳1.5 dex in intensity. When excluding the central region, the data are best described by a power law of an exponent of 1.2, indicating that there is more N2H+per unit HCN in brighter regions. Our observations demonstrate that the HCN-to-CO line ratio is a sensitive tracer of gas density in agreement with findings of recent galactic studies utilising N2H+. The peculiar line ratios present near the AGN and the scatter of the power-law fit in the disk suggest that in addition to a first-order correlation with gas density, second-order physics (such as optical depth, gas temperature) or chemistry (abundance variations) are encoded in the N2H+/12CO, HCN/12CO, and N2H+/HCN ratios. 
    more » « less
  6. We present new JWST observations of the nearby, prototypical edge-on, spiral galaxy NGC 891. The northern half of the disk was observed with NIRCam in its F150W and F277W filters. Absorption is clearly visible in the mid-plane of the F150W image, along with vertical dusty plumes that closely resemble the ones seen in the optical. A ∼10 × 3 kpc2area of the lower circumgalactic medium (CGM) was mapped with MIRI F770W at 12 pc scales. Thanks to the sensitivity and resolution of JWST, we detect dust emission out to ∼4 kpc from the disk, in the form of filaments, arcs, and super-bubbles. Some of these filaments can be traced back to regions with recent star formation activity, suggesting that feedback-driven galactic winds play an important role in regulating baryonic cycling. The presence of dust at these altitudes raises questions about the transport mechanisms at play and suggests that small dust grains are able to survive for several tens of million years after having been ejected by galactic winds in the disk-halo interface. We lay out several scenarios that could explain this emission: dust grains may be shielded in the outer layers of cool dense clouds expelled from the galaxy disk, and/or the emission comes from the mixing layers around these cool clumps where material from the hot gas is able to cool down and mix with these cool cloudlets. This first set of data and upcoming spectroscopy will be very helpful to understand the survival of dust grains in energetic environments, and their contribution to recycling baryonic material in the mid-plane of galaxies. 
    more » « less
  7. Carbon monoxide (CO) emission constitutes the most widely used tracer of the bulk molecular gas in the interstellar medium (ISM) in extragalactic studies. The CO-to-H 2 conversion factor, α 12 CO(1−0) , links the observed CO emission to the total molecular gas mass. However, no single prescription perfectly describes the variation of α 12 CO(1−0) across all environments within and across galaxies as a function of metallicity, molecular gas opacity, line excitation, and other factors. Using spectral line observations of CO and its isotopologues mapped across a nearby galaxy, we can constrain the molecular gas conditions and link them to a variation in α 12 CO(1−0) . Here, we present new, wide-field (10 × 10 arcmin 2 ) IRAM 30-m telescope 1 mm and 3 mm line observations of 12 CO, 13 CO, and C 18 O across the nearby, grand-design, spiral galaxy M101. From the CO isotopologue line ratio analysis alone, we find that selective nucleosynthesis and changes in the opacity are the main drivers of the variation in the line emission across the galaxy. In a further analysis step, we estimated α 12 CO(1−0) using different approaches, including (i) via the dust mass surface density derived from far-IR emission as an independent tracer of the total gas surface density and (ii) local thermal equilibrium (LTE) based measurements using the optically thin 13 CO(1–0) intensity. We find an average value of ⟨ α 12 CO(1 − 0) ⟩ = 4.4  ±  0.9  M ⊙  pc −2  (K km s −1 ) −1 across the disk of the galaxy, with a decrease by a factor of 10 toward the 2 kpc central region. In contrast, we find LTE-based α 12 CO(1−0) values are lower by a factor of 2–3 across the disk relative to the dust-based result. Accounting for α 12 CO(1−0) variations, we found significantly reduced molecular gas depletion time by a factor 10 in the galaxy’s center. In conclusion, our result suggests implications for commonly derived scaling relations, such as an underestimation of the slope of the Kennicutt Schmidt law, if α 12 CO(1−0) variations are not accounted for. 
    more » « less
  8. Abstract We use 0.1″ observations from the Atacama Large Millimeter Array (ALMA), Hubble Space Telescope (HST), and JWST to study young massive clusters (YMCs) in their embedded “infant” phase across the central starburst ring in NGC 3351. Our new ALMA data reveal 18 bright and compact (sub-)millimeter continuum sources, of which 8 have counterparts in JWST images and only 6 have counterparts in HST images. Based on the ALMA continuum and molecular line data, as well as ancillary measurements for the HST and JWST counterparts, we identify 14 sources as infant star clusters with high stellar and/or gas masses (∼105M), small radii (≲ 5 pc), large escape velocities (6–10 km s−1), and short freefall times (0.5–1 Myr). Their multiwavelength properties motivate us to divide them into four categories, likely corresponding to four evolutionary stages from starless clumps to exposed Hiiregion–cluster complexes. Leveraging age estimates for HST-identified clusters in the same region, we infer an evolutionary timeline, ranging from ∼1–2 Myr before cluster formation as starless clumps, to ∼4–6 Myr after as exposed Hiiregion–cluster complexes. Finally, we show that the YMCs make up a substantial fraction of recent star formation across the ring, exhibit a nonuniform azimuthal distribution without a very coherent evolutionary trend along the ring, and are capable of driving large-scale gas outflows. 
    more » « less
  9. Abstract Post-starburst (PSB), or “E + A,” galaxies represent a rapid transitional phase between major, gas-rich mergers and gas-poor, quiescent, early-type galaxies. Surprisingly, many PSBs have been shown to host a significant interstellar medium (ISM), despite theoretical predictions that the majority of the star-forming gas should be expelled in active galactic nuclei– or starburst-driven outflows. To date, the resolved properties of this surviving ISM have remained unknown. We present high-resolution ALMA continuum and CO(2–1) observations in six gas- and dust-rich PSBs, revealing for the first time the spatial and kinematic structure of their ISM on sub-kpc scales. We find extremely compact molecular reservoirs, with dust and gas surface densities rivaling those found in (ultra)luminous infrared galaxies. We observe spatial and kinematic disturbances in all sources, with some also displaying disk-like kinematics. Estimates of the internal turbulent pressure in the gas exceed those of normal star-forming disks by at least 2 orders of magnitude, and rival the turbulent gas found in local interacting galaxies, such as the Antennae. Though the source of this high turbulent pressure remains uncertain, we suggest that the high incidence of tidal disruption events in PSBs could play a role. The star formation in these PSBs’ turbulent central molecular reservoirs is suppressed, forming stars only 10% as efficiently as starburst galaxies with similar gas surface densities. “The fall” of star formation in these galaxies was not precipitated by complete gas expulsion or redistribution. Rather, this high-resolution view of PSBs’ ISM indicates that star formation in their remaining compact gas reservoirs is suppressed by significant turbulent heating. 
    more » « less
  10. ABSTRACT We use the angular two-point correlation function (TPCF) to investigate the hierarchical distribution of young star clusters in 12 local (3–18 Mpc) star-forming galaxies using star cluster catalogs obtained with the Hubble Space Telescope (HST) as part of the Treasury Program Legacy ExtraGalactic UV Survey. The sample spans a range of different morphological types, allowing us to infer how the physical properties of the galaxy affect the spatial distribution of the clusters. We also prepare a range of physically motivated toy models to compare with and interpret the observed features in the TPCFs. We find that, conforming to earlier studies, young clusters ($$T \lesssim 10\, \mathrm{Myr}$$) have power-law TPCFs that are characteristic of fractal distributions with a fractal dimension D2, and this scale-free nature extends out to a maximum scale lcorr beyond which the distribution becomes Poissonian. However, lcorr, and D2 vary significantly across the sample, and are correlated with a number of host galaxy physical properties, suggesting that there are physical differences in the underlying star cluster distributions. We also find that hierarchical structuring weakens with age, evidenced by flatter TPCFs for older clusters ($$T \gtrsim 10\, \mathrm{Myr}$$), that eventually converges to the residual correlation expected from a completely random large-scale radial distribution of clusters in the galaxy in $$\sim 100 \, \mathrm{Myr}$$. Our study demonstrates that the hierarchical distribution of star clusters evolves with age, and is strongly dependent on the properties of the host galaxy environment. 
    more » « less